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IP1 — Lecture 16: Decision Theory

Statistical Decision Theory

Generating decision functions from a statistical characterization of classes
(as opposed to a characterization by prototypes)

Advantages:

1. The classification scheme may be designed to satisfy an objective
optimality criterion:
Optimal decisions minimize the probability of error.

2. Statistical descriptions may be much more compact than a collection of
prototypes.

3. Some phenomena mayonlybe adequately described using statistics, e.g.
noise.
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Example: Medical Screening |

Health test based on some measurement x (e.g. ECG evaluation)
It is known that every 10th person is sick (prior probability):

* ; class of healthy people  P(w;) = 9/10
* ), classof sick people P(w,) = 1/10

Task 1: Classify without taking any measurements (to save money)

* Decision rule 1a: Classify every 10th person as sick

P(error) = P(decide sick if healthy) + P(decide healthy if sick)
=1/10 x 9/10 + 9/10 x 1/10 = 0.18

* Decisionrule 1b: Classify all persons as healthy
P(error) = P(decide healthy if sick) = 1/10 = 0.1
Decision rule 1b is better because it gives lower probability of error

Decision rule 1b is optimal because no other decision rule cangive a lower probability
of error (try "every n-th" in 1a and minimize over n)
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Example: Medical Screening Il

Task 2: Classify after taking a measurement x
Assume that the statistics of prototypes are given as p(x|w;), i = 1, 2

Person No.

134
135
136
137
138
139

X indication

. . p(xle;)

7.4 neg

6.8 neg 0.2 1 w,: sick ;7

4.2 pos :>0.] 1 ///

5.6 neg P

5.8 Pos 2 ’I’ I T T T T
7.2 neg W SO0 3 4 LR

P(e|lx) = P(error givenx) = P(w # ®'|x) = I - P(w|x)
where m'is the class assigned to x by the decision rule.

;. healthy

P(e|x) is minimized by choosing the class which maximizes P(w|x).
Hence g,(x) = P(w,|x) are discriminant functions.

How do we get the "posterior" probabilities P(w,|x)?
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Example: Medical Screening (3)

The posterior probabilities P(w,|x) can be computed from the
"likelihood" p(x|w;) using Bayes” formula:

p(x|a)l.)P(a)l.) p(x|a)i)P(a)l.)

P(a)l.|x)= (%) - Ep(x|wi)P(wi)

For the example, using Bayes” Formula, one could get:

P(wlx)

decision

1.OT =~ boundary
\
\ /
\
05T S
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General Framework for Bayes Classification

Statistical decision theory minimizes the probability of error for
classifications based on uncertain evidence

W, ... W, K classes

P(w,) prior probability that an object of class £ will be observed

¥ = (xl xN) N-dimensional feature vector of an object

p()—g ‘wk) conditional probability ("likelihood") of observing x given that the object
belongs to class wx

conditional probability ("posterior probability") that an object belongs to
class wg given x is observed

Bayes decision rule:
Classify given evidence x as class @ “such that @~ minimizes the probability of error
P(a) = 56)

- Choose o " which maximizes the posterior probability P(a) \5&)

g (%)= P(a)l. |5c’) are discriminant functions.
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Bayes 2-class Decisions

If the decision is between 2 classes w; and w,, the decision rule can be
simplified:

=l

p(ﬂwl) P(w2) p( lwl) is called the
p(X|w,) P(w,) p(%|w,) likelihood ratio"

Choose w; if

8(%) = P(w, %)~ P(e, |7) 8(%)=

For exponential and Gaussian distributions itis useful to take the logarithm:

=10g(p(5ewl)P(wl) 3 1og(M]_1og(1°(“)2))

p(ﬂa)z)P(a)z) p()'c"a)Q) P(w,)

2 1oo| Pl F)
g(x) = log P(a) ‘)_C.)
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Normal Distributions

Gaussian ("normal") multivariate distribution: p()_c’) = e ?

with: Z=E|[(G-@) (-] NxN covariance matrix
4 mean vector

For decision problems, loci of points of constant density are interesting. For
Gaussian multivariate distributions, these are hyperellipsoids:

(X - ) 27" (X - 1) = constant
Eigenvectors of X determine directions of X7

principal axes of the ellipsoids, 1

Eigenvalues determinelengths of the
principal axes.

d=(x-u)>"(x-u) iscalled"squared
Mahalanobis distance” of x from .
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Discriminant Function for Normal Distributions

General form:

w, )) - log(P(a)l. ))

For p(X|w)=N(4.2) :
8 (%) =~4G-@)" = (¥~ )~ log(27) - L log(

g (X)= log(p()?

Zi

) +log(P(w,))

irrelevant for decisions

We consider the discriminant functions for three interesting
special cases:

* univariatedistribution N=/
 statisticallyindependent, equal variance variables x;
* equalcovariance matricesX, =X
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Univariate Distribution

Assumption: p(x|w;) are univariate Gaussian distributions.

Example: 2 classes

1 Loy p(x|wy) (@;]x)
of ' P(w,|x
p(xlw,)= N e l
2O 1 3
| N /M
PNEST /)(\ o
(xlw)=——e °7 \
P 2 /_23_11_(72 \\= i /

Decision rule:
g (x)= log(P(a)l.

x))
1

T 207 (x-w)* —1log(o,)+ log(P(wi))
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Statistically Independent,
Equal Variance Variables

In case of insufficient statistical data, variables are sometimes assumed to be
statisticallyindependent and of equal variance.
3 =0’
1 = _p
sole-al iog(P(w)

If P(w;) = I/N, thenthe decision ruleis equivalentto the
minimum-distance classification rule.

—

gi(x)=_

By expandingg, (X) and droppingthe ¥ term, X,
one gets the decision rule: ‘
1

{203 + i’ i + log (P (@) @@ <@>

which islinearin ¥ and can be written as:

gl.()?)=(wl.)T)?+wl.0 @

The decision surface is composed of hyperplanes.

g:(¥)=-

v
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Equal Covariance Matrices

If 2, =2 the decision rule can be simplified:

6(7) =~ (¥~ ) = (F- )+ log(P(w)

2

l

By expandingthe quadraticform and droppingx’ 3 'xone gets another linear
decision rule which can (again) be written as:

&(%)=(w) T+w,

If the a-priori probabilities are
equal, the decision rule assigns x to
the class where the Mahalanobis
distance to the mean (. is minimal.
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Estimating Probability Densities

X3
Let R be a region in feature space with volume V.

Let k out of N samplesliein R. 2

[ (7)== p(5)V -
R

) | P(3)-

A sequence of approximations p, (X) may be obtained by changingthe
volume V, as the number of samples n increases.

relative frequency of samples per volume

< |zb~

Examples: B L. }ll_ggVn =0
J _ Conditions for a > limk = oo

V,~1/Nn  Parzen Windows converging sequence - ns "
k,~ \n adjust volume for of estimates p,(x): 3 limk—” _0

k nearest neighbours n—=® p
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Estimating the Mean in a
Univariate Normal Density

Given:

p(xln) = N(u, 6°) known normal probability density for x except of unknown mean x
p) = N(uy, 0g)  prior knowledge about u: a normal density with known u,and g
X={x;..x,} samples drawn from p(x)

Estimation using Bayes Rule:

p(X1wp(u) - : :
p(ulX)= =a| | p(x, lu)p(u) |a isscalefactorindependent of u
[ PX 1wp(wdu H "

e — = e
i N2mo V2ro, V2mo,
: ), _ 0,0
with Ex + and X7 B2 2
c+o’\n no, +o’ no, +o

Best estimate of mean 1 after observing n samples
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