

MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS)

Image Processing 1 (IP1) Bildverarbeitung 1

Lecture 16 – Decision Theory

Winter Semester 2015/16

Slides: Prof. Bernd Neumann Silghtly revised by: Dr. Benjamin Seppke & Prof. Siegfried Stiehl

Statistical Decision Theory

Generating decision functions from a statistical characterization of classes (as opposed to a characterization by prototypes)

Advantages:

- The classification scheme may be designed to satisfy an objective optimality criterion:
 Optimal decisions minimize the probability of error.
- 2. Statistical descriptions may be much more compact than a collection of prototypes.
- 3. Some phenomena may only be adequately described using statistics, e.g. noise.

Example: Medical Screening I

Health test based on some measurement x (e.g. ECG evaluation) It is known that every 10th person is sick (prior probability):

- ω_l class of healthy people $P(\omega_l) = 9/10$
- ω_2 class of sick people $P(\omega_2) = 1/10$

Task 1: Classify without taking any measurements (to save money)

• **Decision rule 1a:** Classify every 10th person as sick

 $P(error) = P(decide \ sick \ if \ healthy) + P(decide \ healthy \ if \ sick)$ = 1/10 × 9/10 + 9/10 × 1/10 = 0.18

• **Decision rule 1b:** Classify all persons as healthy

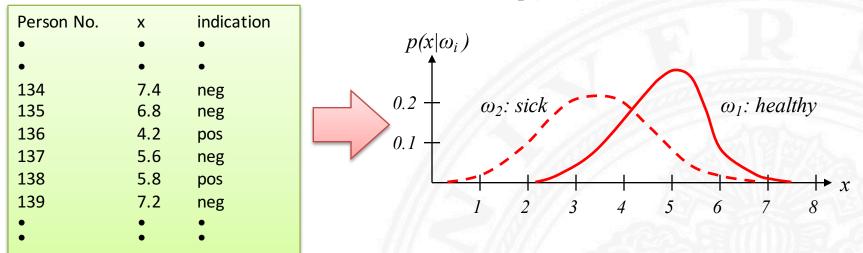
 $P(error) = P(decide \ healthy \ if \ sick) = 1/10 = 0.1$

Decision rule 1b is better because it gives lower probability of error

Decision rule 1b is optimal because no other decision rule can give a lower probability of error (try "every n-th" in 1a and minimize over n)

Example: Medical Screening II

Task 2: Classify after taking a measurement xAssume that the statistics of prototypes are given as $p(x|\omega_i)$, i = 1, 2



 $P(e|x) = P(error given x) = P(\omega \neq \omega'|x) = 1 - P(\omega|x)$

where ω' is the class assigned to x by the decision rule.

P(e|x) is minimized by choosing the class which maximizes $P(\omega|x)$. Hence $g_i(x) = P(\omega_i|x)$ are discriminant functions.

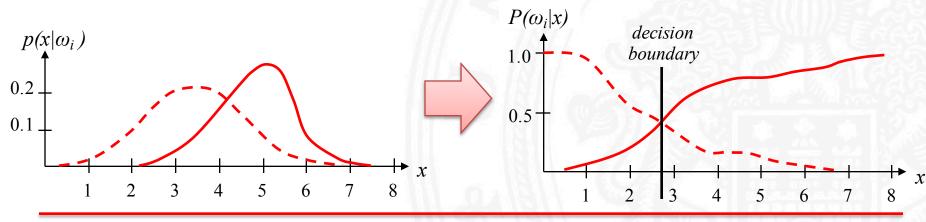
How do we get the "posterior" probabilities $P(\omega_i|x)$?

Example: Medical Screening (3)

The posterior probabilities $P(\omega_i|x)$ can be computed from the "likelihood" $p(x|\omega_i)$ using **Bayes' formula**:

$$P(\omega_i | x) = \frac{p(x | \omega_i) P(\omega_i)}{p(x)} = \frac{p(x | \omega_i) P(\omega_i)}{\sum_i p(x | \omega_i) P(\omega_i)}$$

For the example, using Bayes' Formula, one could get:



General Framework for Bayes Classification

Statistical decision theory minimizes the probability of error for classifications based on uncertain evidence

 $\omega_1 \dots \omega_K$

 $P(\omega_k)$

K classes

prior probability that an object of class k will be observed

- $\vec{x}^T = (x_1 \dots x_N)$ N-dimensional feature vector of an object
- $p(\vec{x} | \omega_k)$ conditional probability ("likelihood") of observing \vec{x} given that the object belongs to class ω_K
- $P(\omega_k | \vec{x})$ conditional probability ("posterior probability") that an object belongs to class ω_K given \vec{x} is observed

Bayes decision rule:

Classify given evidence \vec{x} as class ω' such that ω' minimizes the probability of error $P(\omega \neq \omega' | \vec{x})$

 \rightarrow Choose ω' which maximizes the posterior probability $P(\omega | \vec{x})$

 $g_i(\vec{x}) = P(\omega_i | \vec{x})$ are discriminant functions.

Bayes 2-class Decisions

If the decision is between 2 classes ω_1 and ω_2 , the decision rule can be simplified:

Choose
$$\omega_I$$
 if $\frac{p(\vec{x} | \omega_1)}{p(\vec{x} | \omega_2)} > \frac{P(\omega_2)}{P(\omega_1)}$ $\frac{p(\vec{x} | \omega_1)}{p(\vec{x} | \omega_2)}$ is called the "likelihood ratio"

Several alternative forms are possible for a discriminant function:

$$g(\vec{x}) = P(\omega_1 | \vec{x}) - P(\omega_2 | \vec{x}) \qquad g(\vec{x}) = \frac{P(\omega_1 | \vec{x})}{P(\omega_2 | \vec{x})}$$

For exponential and Gaussian distributions it is useful to take the logarithm:

$$g(\vec{x}) = \log\left(\frac{P(\omega_1 \mid \vec{x})}{P(\omega_2 \mid \vec{x})}\right) = \log\left(\frac{p(\vec{x} \mid \omega_1) P(\omega_1)}{p(\vec{x} \mid \omega_2) P(\omega_2)}\right) = \log\left(\frac{p(\vec{x} \mid \omega_1)}{p(\vec{x} \mid \omega_2)}\right) - \log\left(\frac{P(\omega_2)}{P(\omega_1)}\right)$$

Normal Distributions

Gaussian ("normal") multivariate distribution: $p(\vec{x}) = \frac{1}{(2\pi)^{\frac{N}{2}} |\Sigma|^{\frac{N}{2}}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^T \Sigma^{-1}(\vec{x}-\vec{\mu})}$

with: $\Sigma = E\left[(\vec{x} - \vec{\mu})^T(\vec{x} - \vec{\mu})\right]$ N×N covariance matrix $\vec{\mu}$ mean vector

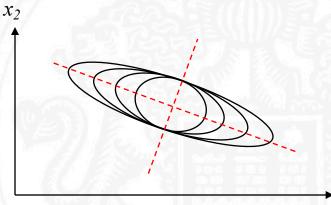
For decision problems, loci of points of constant density are interesting. For Gaussian multivariate distributions, these are hyperellipsoids:

 $(\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})$ = constant

Eigenvectors of Σ determine directions of principal axes of the ellipsoids, Eigenvalues determine lengths of the

principal axes.

 $d^2 = (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})$ is called "squared Mahalanobis distance" of \vec{x} from $\vec{\mu}$.



 x_{I}

Discriminant Function for Normal Distributions

General form:

 $g_i(\vec{x}) = \log(p(\vec{x} | \omega_i)) - \log(P(\omega_i))$

For
$$p(\vec{x}|\omega_i) \approx N(\vec{\mu}_i, \Sigma_i)$$
:
 $g_i(\vec{x}) = -\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu}) - \frac{N}{2} \log(2\pi) - \frac{1}{2} \log(|\Sigma_i|) + \log(P(\omega_i))$

irrelevant for decisions

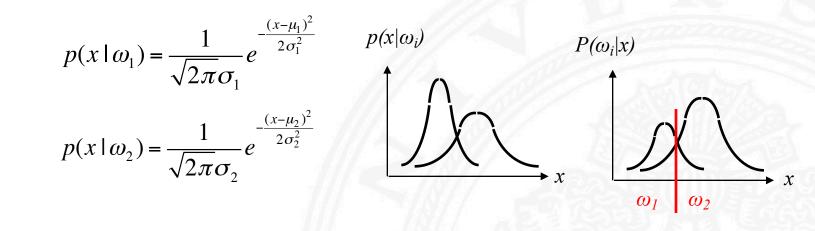
We consider the discriminant functions for three interesting special cases:

- univariate distribution N=1
- statistically independent, equal variance variables x_i
- equal covariance matrices $\Sigma_i = \Sigma$

Univariate Distribution

Assumption: $p(x|\omega_i)$ are univariate Gaussian distributions.

Example: 2 classes



Decision rule:

$$g_i(x) = \log(P(\omega_i | x))$$
$$= -\frac{1}{2\sigma_i^2}(x - \mu)^2 - \frac{1}{2}\log(\sigma_i) + \log(P(\omega_i))$$

Statistically Independent, Equal Variance Variables

In case of insufficient statistical data, variables are sometimes assumed to be statistically independent and of equal variance.

$$\Sigma_{i} = \sigma^{2} I$$

$$g_{i}(\vec{x}) = -\frac{1}{2\sigma_{i}^{2}} \|\vec{x} - \vec{\mu}\|^{2} + \log(P(\omega_{i}))$$

If $P(\omega_i) = 1/N$, then the decision rule is equivalent to the minimum-distance classification rule.

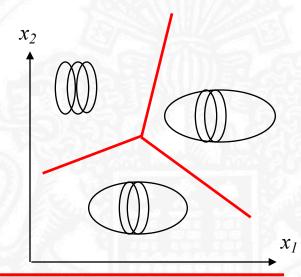
By expanding $g_i(\vec{x})$ and dropping the $\vec{x}^T \vec{x}$ term, one gets the decision rule:

$$g_i(\vec{x}) = -\frac{1}{2\sigma_i^2} \left[-2\vec{\mu}^T \vec{x} + \vec{\mu}^T \vec{\mu} \right] + \log(P(\omega_i))$$

which is linear in \vec{x} and can be written as:

$$g_i\left(\vec{x}\right) = \left(w_i\right)^T \vec{x} + w_{i_0}$$

The decision surface is composed of <u>hyperplanes</u>.



Equal Covariance Matrices

If $\Sigma_i = \Sigma$, the decision rule can be simplified:

T

$$g_{i}(\vec{x}) = -\frac{1}{2\sigma_{i}^{2}} (\vec{x} - \vec{\mu})^{T} \Sigma^{-1} (\vec{x} - \vec{\mu}) + \log(P(\omega_{i}))$$

By expanding the quadratic form and dropping $\vec{x}^T \Sigma^{-1} \vec{x}$ one gets another linear decision rule which can (again) be written as:

$$g_i(\vec{x}) = (w_i)^T \vec{x} + w_{i_0}$$

If the a-priori probabilities are
equal, the decision rule assigns \vec{x} to
the class where the Mahalanobis
distance to the mean $\vec{\mu}_i$ is minimal.

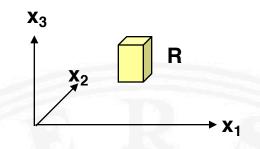
 $\bullet x_1$

Estimating Probability Densities

Let *R* be a region in feature space with volume *V*.

Let k out of N samples lie in R.

$$\int_{R} p(\vec{x}') d\vec{x}' \approx \frac{k}{N} \approx p(\vec{x}) V$$



 $p(\vec{x}) \approx \frac{\frac{n}{N}}{V}$ relative frequency of samples per volume

A sequence of approximations $p_n(\vec{x})$ may be obtained by changing the volume V_n as the number of samples *n* increases.

Examples:

 $V_n \sim 1/\sqrt{n}$ Parze $k_n \sim \sqrt{n}$ adjus

Parzen Windows adjust volume for k nearest neighbours Conditions for a <u>converging</u> sequence of estimates p_n(<u>x</u>): 3. 1

$$\lim_{n \to \infty} V_n = 0$$
$$\lim_{n \to \infty} k_n = \infty$$
$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$

Estimating the Mean in a Univariate Normal Density

Given:

 $p(x|\mu) = N(\mu, \sigma^2)$ known normal probability density for x except of unknown mean μ $p(\mu) = N(\mu_0, \sigma_0)$ prior knowledge about μ : a normal density with known μ_0 and σ_0 $X = \{x_1 \dots x_n\}$ samples drawn from p(x)

Estimation using Bayes Rule:

$$p(\mu \mid X) = \frac{p(X \mid \mu)p(\mu)}{\int p(X \mid \mu)p(\mu)d\mu} = \alpha \prod_{k=1}^{n} p(x_k \mid \mu)p(\mu) \quad \alpha \text{ is scale factor independent of } \mu$$
$$= \alpha \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x_k - \mu}{\sigma}\right)^2} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{\mu - \mu_0}{\sigma_0}\right)^2} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{\mu - \mu_n}{\sigma_n}\right)^2}$$
with
$$\mu_n = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \left(\frac{1}{n}\sum_{k=1}^{n} x_k\right) + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 \qquad \text{and} \qquad \sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$$

Best estimate of mean μ after observing *n* samples