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Statistical	Decision Theory

Advantages:
1. The	classification schememaybe designed to satisfy an	objective

optimality criterion:	
Optimal	decisionsminimize the probability of error.

2. Statistical	descriptionsmaybemuch more compact than a	collection of
prototypes.

3. Some phenomenamayonly be adequately described using statistics,	e.g.	
noise.
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Generating	decision functions from a	statistical characterization of classes
(as opposed to a	characterization by prototypes)
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Example:	Medical	Screening	I
Health test based on	some measurement x (e.g.	ECG	evaluation)
It is known that every 10th	person is sick	(prior probability):
• ω1 class of healthy people P(ω1) = 9/10
• ω2 class of sick	people P(ω2) = 1/10

Task	1:		Classify without taking anymeasurements (to save	money)
• Decision rule 1a: Classify every 10th	person as sick

P(error) = P(decide sick if healthy) + P(decide healthy if sick)
= 1/10 × 9/10 + 9/10 × 1/10 = 0.18

• Decision rule 1b:		Classify all	persons as healthy

P(error) = P(decide healthy if sick) = 1/10 = 0.1

Decision rule 1b	is better because it gives lower probability of error

Decision rule 1b	is optimal	because no other decision rule cangive a	lower probability
of error (try "every n-th"	in	1a	and minimize over n)
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Example:	Medical	Screening	II
Task	2:		Classify after	taking a	measurement x
Assume that the statistics of prototypes are given as p(x|ωi), i = 1, 2

P(e|x) = P(error given x) = P(ω ≠ ω'|x) = 1 - P(ω|x) 
where ω'	is the class assigned to x by the decision rule.

How do	we get the "posterior"	probabilities P(ωi|x)?

4

IP1	– Lecture 16:	Decision Theory

Person	No. x	 indication
• • •
• • •
134 7.4 neg
135 6.8 neg
136 4.2 pos
137 5.6 neg
138 5.8 pos
139 7.2 neg
• • •
• • •

P(e|x) is minimized by choosing the class which maximizes P(ω|x).
Hence gi(x) = P(ωi|x) are discriminant functions.		

ω1: healthyω2: sick

1 2 3 4 5 6 7 8
x

0.1

0.2

p(x|ωi )
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Example:	Medical	Screening	(3)

The	posterior probabilitiesP(ωi|x) can be computed from the
"likelihood"	p(x|ωi) usingBayes´ formula:

For the example,	using Bayes´ Formula,	one could get:
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p(x|ωi ) decision
boundary

P(ωi|x)
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P ωi x( ) =
p x ωi( )P ωi( )

p(x)
=

p x ωi( )P ωi( )
p x ωi( )P ωi( )

i
∑
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General	Framework	for Bayes Classification

K classes
prior probability that an	object of class kwill	be observed

N-dimensional	feature vector of an	object

conditional probability ("likelihood")	of observing given that the object
belongs to classωK

conditional probability ("posterior probability")	that an	object belongs to
classωK given is observed
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Statistical	decision theoryminimizes the probabilityof error for
classifications based on	uncertain evidence

Bayes decision rule:
Classify given evidence as classω´ such	that ω´ minimizes the probability of error

à Choose ω´ which maximizes the posterior probability
are discriminant functions.	

ω1...ωK

P(ωk )
!xT = x1... xN( )
p !x ωk( )
P ωk

!x( )

!x

!x

!x
P ω ≠ "ω

!x( )
P ω

!x( )
gi
!x( ) = P ωi

!x( )
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Bayes	2-class	Decisions
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If the decision is between 2	classes ω1 andω2,	the decision rule can be
simplified:

Chooseω1 if
p !x ω1( )
p !x ω2( )

>
P ω2( )
P ω1( )

For exponential and Gaussian distributions it is useful to take the logarithm:

Several alternative	forms are possible for a	discriminant function:

g(!x) = log
P ω1
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is called the
"likelihood ratio"

g !x( ) = P ω1
!x( )−P ω2

!x( ) g !x( ) =
P ω1

!x( )
P ω2

!x( )
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Normal	Distributions
Gaussian ("normal")	multivariate	distribution:

with:	 N×N	covariance matrix
mean vector

For decision problems,	loci	of points of constant density are interesting.	For
Gaussianmultivariate	distributions,	these are hyperellipsoids:

Eigenvectors ofΣ determine directions of
principal axes of the ellipsoids,
Eigenvalues determine lengths of the
principal axes.

is called "squared
Mahalanobis distance"	of from .
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p !x( ) = 1
2π( )

N
2 Σ

N
2
e
−
1
2
( !x− !µ )T Σ−1( !x− !µ )

x1

x2

Σ = E (!x − !µ)T (!x − !µ)#$ %&!
µ

=	constant(!x − !µ)T Σ−1(!x − !µ)

d 2 = (!x − !µ)T Σ−1(!x − !µ) !
µ

!x
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Discriminant Function for Normal	Distributions

General	form:

For :

We consider the discriminant functions for three interesting
special cases:

• univariatedistributionN=1
• statistically independent,	equal variancevariables	xi
• equal covariancematricesΣi = Σ
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gi
!x( ) = log p !x ωi( )( )− log P ωi( )( )

p !x ωi( ) ≈ N !µi ,Σi( )

irrelevant	for decisions

gi
!x( ) = − 1

2 (
!x − !µ)T Σ−1(!x − !µ)− N

2 log 2π( )− 1
2 log Σi( )+ log P ωi( )( )
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Univariate	Distribution

Assumption:	p(x|ωi ) are univariate Gaussian distributions.

Example:	2	classes

Decision rule:
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x

p(x|ωi)p(x |ω1) =
1
2πσ1

e
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(x−µ1 )
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1
2πσ 2

e
−
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2σ 2
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x

P(ωi|x)

ω1 ω2

gi x( ) = log P ωi x( )( )
= −

1
2σ i

2 (x −µ)
2 − 1

2 log σ i( )+ log P ωi( )( )
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Statistically	Independent,	
Equal	Variance	Variables

In	case of insufficient statistical data,	variables	are sometimes assumed to be
statistically independent and of equal variance.	

If P(ωi) = 1/N,	then the decision rule is equivalent to the
minimum-distance classification rule.

By expanding and dropping the term,	
one gets the decision rule:

which is linear	in					and can be written as:

The	decision surface is composed of hyperplanes.

11

IP1	– Lecture 16:	Decision Theory

x1
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2I
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+ log P ωi( )( )

gi
!x( ) !xT !x

gi
!x( ) = − 1

2σ i
2 −2 !µT !x + !µT !µ"# $%+ log P ωi( )( )
!x

gi
!x( ) = wi( )T

!x +wi0

04.01.16 University of Hamburg, Dept. Informatics



Equal	Covariance	Matrices
If Σi = Σ,	the decision rule can be simplified:

By expanding the quadratic form	and dropping one gets another linear	
decision rulewhich can (again)	be written as:
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•
•

x1

x2

gi
!x( ) = − 1

2σ i
2

!x − !µ( )T Σ−1 !x − !µ( )+ log P ωi( )( )
!xTΣ−1!x

gi
!x( ) = wi( )T

!x +wi0

If the a-priori	probabilities are
equal,	the decision rule assigns to
the class where theMahalanobis
distance to the mean is minimal.

!
µi

!x
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Estimating	Probability	Densities
Let R be a	region in	feature space with volumeV.	
Let k out	of N samples lie in	R.

A	sequence of approximations maybe obtainedby changing the
volumeVn as the number of samples n increases.

Examples:
Vn ∼ 1/√n Parzen	Windows
kn∼ √n adjust volume for

k nearest neighbours
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x1

x2

x3

R

relative	frequency of samples per	volume

p !
!x( )

R
∫ d !

!x ≈ k
N
≈ p !x( )V

p !x( ) ≈
k
N

V

Conditions for a 
converging sequence
of estimates pn(x):

1. lim
n→∞

Vn = 0

2. lim
n→∞

kn =∞

3. lim
n→∞

kn
n
= 0

pn
!x( )
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Estimating the Mean in	a	
Univariate Normal	Density

Given:
p(x|µ) = N(µ, σ2) known normal probability density for x except of unknown mean µ
p(µ) = N(µ0, σ0) prior knowledge about µ: a	normal	density with known µ0 and σ0

X = {x1 ... xn} samples drawn from p(x)

Estimation using Bayes Rule:
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Best	estimate of mean µ after	observing n samples
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